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ABSTRACT

FORTRAN computer subroutines stemming from requirements to pro-

cess state variable system equations for systems of high order are

presented. They find the characteristic equation of a matrix using
the method of Danilevsky, the number of roots with positive real

parts using the Routh-Horwitz alternate formulation, convert a state
variable system description to a Laplace transfer function using
the method of Bollinger, and evaluate that transfer function and

obtain its frequency response. A sample problem is presented to

demonstrate use of the subroutines.
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COMPUTER PROGRAMS FOR CALCULATION OF MATRIX STABILITY AND

FREQUENCY RESPONSE FROM A STATE-SPACE SYSTEM DESCRIPTION

by Robert C. Seidel

Lewis Research Center

SUMMARY

FORTRAN computer subroutines stemming from requirements to pro-
cess state variable system equations for systems of high order are
presented. They find the characteristic equation of a matrix using
the method of Danilevsky, the number of roots with positive real
parts using the Routh-Horwitz alternate formulation, convert a state
variable system description to a Laplace transfer function using the
method of Bollinger, and evaluate that transfer function and obtain
its frequency response. A sample problem is presented to demonstrate
use of the subroutines.

o INTRODUCTION

High-speed digital computers have made matrix state variable
methods for system analysis practical. But for large systems, the
required execution time and the cumulative effect of round off errors
make it increasingly important to employ efficient algorithms.
FORTRAN subroutines resulting from requirements to handle large
systems are reported herein. In particular, they find the charac-
teristic equation of a system matrix, test that equation for the num-
ber of roots with positive real parts, convert a state variable
system description to a Laplace transfer function and evaluate the
transfer function at a given frequency to obtain its frequency response.

The FORTRAN program for obtaining the characteristic equation of
a system matrix uses the method of Danilevsky, reference 1. The pro-
gram includes a Gauss pivotal element condensation scheme to somewhat
increase its accuracy. A competing method is that of Leverrier,
references 1 and 2. However, to compute the characteristic polynomial
the Danilevsky method is known to be more accurate, faster, and re-
quire less storage. The FORTRAN program for determining the stability
of the characteristic polynomial uses the Routh-Horwitz alternate
formulation method, reference 3. The FORTRAN program for obtaining
the system transfer function uses the method of Bollinger, reference 4.
This method appears more reliable than the method of Davison, refer-
ence 5, which in certain cases is known to converge improperly
(ref. 4). However Davison's transformation, which permits the output
to be an arbitrary linear combination of the states, is used in
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conjunction with Bollinger's method. The inverse of this transfor-
mation is also required, but is easily calculated in closed form.
Once the transfer function is obtained its frequency response is
easily calculated.

The FORTRAN listings and subroutine descriptions are presented
in the following section. Equation symbols are defined in Appendix
A. FORTRAN symbols are defined separately for each program.. A
sample problem demonstrating the use of the subroutines is described
in Appendix B.

COMPUTER PROGRAMS

Characteristic Equation

In subroutine DANSKY the characteristic equation of a matrix is
found by the method of Danilevsky, reference 1. The characteristic
equation of an nxn matrix A is an expansion of the determinant
equation

A - XI = (-l)n(n + Z1 n-l + ... + Zln) =

where I is the identity matrix and the polynomial coefficients
sought are in the Zi vector. The Zl vector coefficients are
obtained in DANSKY through successive application of similarity
transformations which finally produce the Zi vector in the top row
of A. As noted in reference 1 the method allows use of a Gauss
pivotal element scheme to somewhat increase its accuracy. In DANSKY
this option is implemented. The Gauss method performs similarity
transformations which interchange columns and rows of A to place the
element with the largest absolute value in pivot position. The
execution time for an 18x18 A matrix is about 0.35 sec (IBM-360-67 TSS
computer). DANSKY uses (as most of the programs) double precision.
The time penalty for using double precision is only about 0.02 sec
for the 18x18 matrix. One problem which occurs with certain A matrices
when using DANSKY is that of exponent under or overflow. In such
cases the matrix A may be (time) scaled by multiplying each element
of A by a positive constant, r. The characteristic polynomial of the
scaled matrix becomes

Xn + (Zl1r)xn-l + oo. + (Zlnrn)

Figure 1 is a description of the DANSKY calling statement transfer
variables. Figure 2 is a FORTRAN listing of DANSKY.
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For comparison with the Danilevsky method some results obtained

with the Leverrier method are cited. For the same 18x18 matrix dis-

cussed earlier, the Leverrier program required 4.2 sec (compared to

0.35 sec for the Danilevsky method). Also, two additional 18x18

double precision scratch storage matrices are required for the

Leverrier method, and double precision is required to obtain the same

accuracy achieved by DANSKY in single precision.

In DANSKY a call is made to subroutine POLMPY to multiply two

polynomials. In certain cases the method of Danilevsky obtains the

characteristic equation coefficients in partially factored form and

the factors must be multiplied together to obtain the characteristic

equation. In DANSKY a call is made to POLMPY in all cases with one

of the polynomials possibly unity. Figure 3 is a description of the

POLMPY transfer variables. Figure 4 is a FORTRAN listing of POLMPY.

Stability

The subroutine RHWTZ performs a stability test upon the charac-

teristic equation. It counts the number of roots with positive real

parts without actually finding them. A simple recursive algorithm

which is well suited to machine computation is used. Its description

is given in reference 3. The program is specialized in that it assumes

the leading polynomial coefficient is unity as in the form returned

by DANSKY. The execution time for an eighteenth order polynomial is

about 0.007 sec. Figure 5 presents a description of the RHWTZ trans-

fer variables and figure 6 presents a FORTRAN listing of RHWTZ.

For certain equations the test may fail if during the algorithm

execution a zero appears as a divisor term. In this case the number

of unstable roots is set to -1 and the message "Test Failed M set to

-1" is output.

Transfer Function

BOLLIN is a subroutine for converting a state variable matrix

differential equation into an equivalent Laplace transfer function.

The system equations considered are

x = Ax + Bu, y = Ctx

where x, B, and C are n vectors, A is an nxn matrix, and u and

y are input and output scalars. The following steps are taken to

obtain the system transfer function:
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1. A call to subroutine DAVISO transforms the A and B system
matrices using the C vector so as to make the output y a state
variable in the transformed system, reference 5. The transformed
system is

A* 1TAT * *
A = TAT, B = TB, and x = Tx

such that

x =Ax +Bu

where T is the identity matrix except that the MC-th row is over-
written by the C vector. The integer MC is the position of the
element of C with the maximum absolute value. The T-1 matrix is

similar to inverses encountered in the proof of the Danilevsky method,
reference 1, and can be written down explicitly. The output * of
the modified system is the MC-th modified state variable, xMC.

2. The denominator polynomial Z1 (characteristic equation) of
the system transfer function is obtained by a call to DANSKY using the
A matrix.

3. The numerator polynomial is obtained in two more calls to
DANSKY using Bollinger's method, reference 4. First, with the MC-th
column of A replaced by -B to obtain Z2; then, with a matrix of

order (n-l) obtained by deleting the MC-th row and column from A
to obtain Z3.

4. The numerator polynomial is computed as Z4 = Z2 - sZ3.

5. The system transfer function y(s)/u(s) is Z4(s)/Zl(s).

Execution times found for various order systems were about 1.0 sec
for an eighteenth order, 2.7 sec for a twenty-sixth order, and 9.7 sec
for a forty-first order system. Figure 7 is a description of the
BOLLIN transfer variables. Figure 8 is a FORTRAN listing of BOLLIN.
Figure 9 is a description of the DAVISO transfer variables and figure 10

is a FORTRAN listing of DAVISO. If the A matrix is time scaled by
multiplication by scalar r, the B vector and frequencies used to
evaluate the transfer function should also be scaled by r. To handle
the more general case of multiple input, multiple output systems where
B and C are matrices, the program calling BOLLIN would start the

B and C matrices at the appropriate columns in the transfer variable
list to obtain the desired input/output relation, reference 5.
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Frequency Response

The subroutine FRPOLY may be used to evaluate the Laplace trans-

form Z4(s)/Zl(s) ratio of polynomials for a given frequency s = jw.
The evaluation is performed in double precision with the real and

imaginary parts of the powers of jw handled separately. Figure 11

is a description of the FRPOLY transfer variables and figure 12 is a

FORTRAN listing of FRPOLY. To evaluate a system frequency response
ever a range of frequencies, multiple calls to FRPOLY would be made.

CONCLUDING REMARKS

Six subroutines: DANSKY, POLMPY, RHWTZ, BOLLIN, DAVISO, and

FRPOLY were presented and discussed. The chart shown in figure 13

summarizes the flow from a state variable representation of a system
through the various subroutines. The major input and output relations

and alternate paths for various uses are noted.
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APPENDIX A

SYMBOLS

A system matrix, nxn

B input vector, n

C output vector, n

I identity matrix, nxn

j imaginary, J-L

MC position of element in C with maximum absolute value

n system order

r scaling factor
-I

s Laplace variable, sec-

t time, sec

T transformation matrix, nxn

u input

x state variable vector, n

y output

Zl characteristic equation polynomial

Z2 intermediate polynomial

Z3 intermediate polynomial

Z4 system numerator transfer function polynomial

X root of characteristic equation

w frequency, hertz

Superscript:

denotes transformed variable

transpose
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APPENDIX B

SAMPLE PROBLEM

A third order sample problem demonstrating the combined use of the
subroutines is described next. The problem studied is the transfer
function

(s) s+6 s+6
u(s) (s2 + 3s + 9)(s + 4) s3 + 7s2 + 21s + 36

In phase variable form the state matrices are

0 1 0 0 6

A = 0 0 1 , B 0
36 -21 -7 1

Figure 14 is a FORTRAN listing of the sample problem MAIN program.
First the A, B, and C matrices are output. Next after a call to BOLLIN,
the denominator and numerator polynomial coefficients are output. Then,
after a call to FRPOLY, the transfer function evaluated at one hertz is
output, and finally, after a call to RHWTZ, the number of unstable roots
is output.

Figure 15 i a li ting of the program output. The denominator 3polynomial is s + 7s + 21s + 36 with the unity coe ficient of a
understood. The nume ator polynomial is -2.220E-16 s + s + 6. The
coefficient of the s term should actually be zero but due to limited
numerical precision is slightly in error. The transfer function is
evaluated at one hertz (s = j2) and has a real part of -.03048 and
an imaginary part of -.01142 or an amplitude of .03255 at -159.5
degrees. There are no roots of the denominator polynomial with positive
real parts.

If only a test of system stability were desired then it would not
be necessary to use BOLLIN. Instead DANSKY could be called to obtain
the characteristic equation followed by a call to RHWTZ. BOLLIN is
organized such that it computes the denominator transfer function Zl
each time it is called. To save computations the user may wish to modify
this if the transformed matrix A is known to remain constant for a
particular set of B and/or C changes.
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DANSKY

Danilevsky

PURPOSE: To obtain the characteristic equation of a
square real matrix

USAGE: CALL DANSKY (A, X, Y, Z, N, NMAX)

Where A - square real matrix, order NxN

X - scratch vector, order N

Y - scratch vector, order N

Z - characteristic polynomial vector, order N

N - order of A

NMAX - dimension of A in calling program > N

DOUBLE DIMENSION: A must be double dimen-
sioned (NMAX, NMAX) in
calling program

DOUBLE PRECISION: A, X, Y, and Z must be
double precision in calling
program

NOTES: (1) A is destroyed in obtaining Z

(2) The Z characteristic equation is
returned in the form

n + z 1n-1 + ooo +Z n A +
1 n-l n

Subroutines called: (1) POLMPY

FIGURE 1.-DESCRIPTION OF SUBROUTINE DANSKY TRANSFER VARIABLES



C COMPI!TE T'IF CflrFFICIFNT , OF.THF CHrA~PSi FMI'ATION
SUBROUTU!lF On0r-KY(A,Y,Y,Z,N,NfMAX)
DIMENSI ON A (NtAX, 1),X(l),Z(1),YM1
nOIJBLF PPECISION Sl,A,SAVEr)IVOT,rK,X,Y,Z

10 NM1aNN-1
IF(Ml1.EQ.n) GO TO 125
DO 120 I=1,rNMl

I PVT= NNI
NMI M1=NAI -1
NlI P1=NtlI +1

C FIND HWXIrIl'! EI.7fFNT IN PIVOT Rm~j
XtIAX=A (fit'I Pl, Wl I )
IF(NIIH1.rT.n) GO TV' 15
IF(XI PAX.FCn.n.) GO TO 14n0
rO To 5n

15 o0 20 Klml,MfHIM1

X1IAX=ACNNIP1,K)
I PVT=K

20 CONT I NJF
IF(XM'AX.EF2.n.) GO TO 1140
IF(IPVT.EO.MVI) f00 TO 50

C SIM1ULARITY TRANSFnril em PIVOT FLFfINT 1 1 THR 11tfltlf
n0 30 J-d,NltP1
SAVE-A(O, IPVT)
A(J, IPVT)-A(J,NMI )

30 A(J,NMI)nSAVE
n0 40 ~jj1~wi
SAVTuA( I P\T,d)
AC IPVT,d)uA(NMI ,J)

40 A(NMI,J)oSAVF
C A UPDATE FOIJILI A * H1CSUR N-1)
50 PIVOTwl./A(NtlIPl,NMI)

no 80 Kui,NN
IF(K.En.NMI) 00 TO A0
CKu-A(NMI P1,K)*PIVOT
DO 70 IIul,NMI

70 AC I, K)-A It, K)sAC II,NM~I )'f"K
8-0 CONT-INUF

85 ACII,NMI)wA(I1,NMI)*RIVnT
C MULT NSI(MJ N-i) INVP TIMRF, A IMPATM.

no 110 I iu1,N

D0 00 Kal,MMI
00 SIUMm~tMlA(N?!I ,K)*AC'K It)

IFCIILTNMI) 00 TO) 106
IpCI.Eq.144) n0 TO 100

IF(II,LT,NMI) MM TO 100
IFI~CI,.flNN) 00 TO 100

100 ACNMI, II )sSIM
110 fONT I NU
120 CONTINUE
125 MIp1!1
O ELMNTS OF P OE.T E.OUAL TO I-A§T 9L0MVT§ IN Pfl MIMPF =A
14.0 o0 150 J=NMI~l#NM

150 XCNX)=-A(NMIPl J)
C MULTIPLY OUT FAfTWR OF IA !ITFWAUfTIPM
100 NYmN-N

z00 Yd)=-Z()
CALL P0U:'IPYCX Y RjMNNtIYNYPNX

IMP1,11T,Q) fl0 TO 10
RE.TURNENrO



10

POLMPY

Polynomial Multiplication

PURPOSE: To multiply two polynomials X*Y

CALL POLMPY (X, Y, Z, NX, NY, NZ)

Where X - first polynomial, vector

Y - second polynomial, vector

Z - returned product polynomial, vector

NX - order of X

NY - order of Y

NZ = NX + NY (order of Z) returned

NOTE: (1) leading coefficient of highest
power is assumed to be one, i.e.,
for X:

NX + X1NX- + ... + XNX

DOUBLE PRECISION: X, Y, and Z must be
double precision in the
calling program

FIGURE 3.-DESCRIPTION OF SUBROUTINE POLMPY TRANSFER VARIABLES



C IIILTIPLY X*Y=Z (L.E^.NG POLYNOMIAL COEFFICIE!Tr AStIIMED 1IITY)

SUBROUTINE POL.'PY(X,Y,Z,NX,NY, !Z)
DIlENrSION X(1),Y(1),Z(1)
DOUBLE PREeCI ION X,Y,Z,YJ
NZuNX+!'Y

C IF NX=0 rEANS POI.Y Y=1;THEREFORE Z=Y

IF(NX.GT.n) GO TO 6
nO 4 J=1,NY

4 Z(J)=Y(J)
GO TO 40

C IF NY=0 MEANS POLY Y=1;THERErORE Z=X

6 IF(NY.IT.O) GO TO 15
DO 8 J=1,NX

8 Z(J)=X(J)
GO TO 40

C START MUI.TIPLICATION BY MPAING Z=Y***NX
15 DO 20 J=1,NZ

YJ=Y(J)
IF(J.GT.NY) YJ=0.

20 Z(J)=YJ
C MULTIPLICATION LOOP

DO 30 K=1,IX
Z(K)=Z(K)+X(K)
DO 25 J=1,NY
KPJ=K+,I

25 Z(KPJ)=Z(KJ)+Y(J)*X(K)
30 CONTINUE
40 RETURN

END

FIGURE 4.-FORTRAN LISTING FOR SUBROUTINE POLMPY
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RHWTZ

ROUTH - HURWITZ ALTERNATE FORMULATION

PURPOSE: To compute the number of roots with positive real
parts of a polynomial equation

USAGE: CALL RHWTZ (C,N,M)

Where C - coefficients of polynomial equation, vector

N - equation order

M - number of roots with positive real parts
(M set to -1 if test fails due to attempted
division by zero)

RESTRICTION: The C vector starts with the second coefficient,
as the first is assumed unity; that is:

An + C xn-1 + .. + C X + C = 0

NOTE: C is destroyed upon return

DOUBLE PRECISION: C must be double precision
in the calling program

PROGRAM OUTPUT: "TEST FAILED M SET TO -1" out-
put if division by zero is
attempted

FIGURE 5.-DESCRIPTION OF SUBROUTINE RHWTZ TRANSFER VARIABLES



C ROUTH IIT IHORITZ ALTERNATF FORMULATION STABILITY TEST

SUBROUTINE RHIBTZ(C,N,M)
DOUBLE PRFCISION C,CNM1,COEF,CNf12
DIMENSION C(1)
NM1=N-1
M=O

C PROVIDE FOR CAE O =0,1,OR 2
IF(N.LE.0) GO TO 30
IF(N-2) 4,8,10

4 IF(C(1).LT.O.) M=1
8 10 TO 30

8 CNM1..
GO To 25

10 IF(C(1).EQ.f.) GO TO 35
COEF1./C(1)

C START ALORITHM LOOP
DO 20 K=2,NM1
IF(COEFF.LT.0) M-M+1
no00 15 J-K,NM1,2

15 C(J)=C(J)-COEF*e(J+1)
IF(C(K).EQ.n.) GO TO 35
.COEF=C(K-1)/C(K)

20 CONTINUE
C FINISH REMAINING 2 ND ORDFR POLYNOMIAL

CNM2,C(N-2)
25 IF(CNM2*C(NM1).LT.0.) M-M+1
23 IF(C(NM1)*C(N).LT.0.) M-M+I
30 RETURN
35 WRITE(6,45)
45 FORMAT(1X,23HTEST FAILED M SET TO -1)

GO TO 30
END

FIGURE 6.-FORTRAN'LISTING FOR SUBROUTINE RHWTZ
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BOLLIN

Bollinger

PURPOSE: To obtain a system transfer function from system
matrix equations

USAGE: CALL BOLLIN (A,AS,B,X,Y,ZI,Z2,Z3,N,NMAX)

Where A - system matrix (NxN)

AS - scratch matrix (NxN)

B - system input vector (N)

C - system output vector (N)

X - scratch vector (N)

Y - scratch vector (N)

Zl - transfer function denominator, vector (N)

Z2 - transfer function numerator, vector (N)

Z3 - scratch, vector (N)

N - system order

NMAX - dimension of A and AS in calling program > N

DOUBLE DIMENSION: A and AS must be double
dimensioned (NMAX, NMAX)
in calling program

DOUBLE PRECISION: AS must be double precision
in calling program

NOTES: (1) A is destroyed in obtaining Z1 and Z2

(2) The Zl and Z2 are returned as in

Z1 = n + Zl n-1 +

Z2 = Z2 1 n- + '9+Z2

n

SUBROUTINES CALLED: (1) DAVISO

(2) DANSKY

FIGURE 7.-DESCRIPTION OF SUBROUTINE BOLLIN TRANSFER VARIABLES



C CONVERT X(DOT).AX+RU,Y=C(TRANSPOSE)X TO TRANSFER

C FUNCTION Y/U=Z2/Z1 RATIO OF POLYNOMIALS
SUBROUTINE BOLLIN(A,AS,B,C,X,Y,Z1,Z2,Z3,N,UMAX)
DIMENSION A(M*AX,1),AS(NIAX,1), B(1),C(1), X(1), Y(1)

DIMENSION Z1(1),Z2(1),Z3(1)
nOUBLE PRECISIONI AS,X,Y,Z1,Z2,Z3

C TRANSFORM Z=TX TO PMAKF OtJTPIIT A STATE
CALL DAVISO(A,B,C, N,NMAX,MC)

C SAVE A USINr AS
DO 20 K=1,N
DO 10 J-1,N

10 AS(K,J)=A(K,J)
20 CONTINUE
C FIND DEN CHAR EQN COEF'S

CALL DANSKY(AS,X,Y,Z1l,N,NMAX)
C SET AS=A AAIN AND OVER '!RITE A(K,MC) rOLtUMil WIT!l -B

DO 40 Ku=,N
DO 30 J=1,N

30 AS(K,J)-A(K,J)
40 AS(K,MC)=-B(K)
C FIND FIRST PART OF NIIM CHAR EON

CALL DANSKY(AS,X,Y,Z2,N,NMAX)
C SET AS=A AcAIN; COLLAPSE trC ROW AND COLUMN

NM1=N-1
DO 60 K=1,lM1
K1-K
.IF(K.GE.MC) K1-K+1
DO 50 J=1,NM1
J1=J
IF(J.OE.MC) J1lJ+1

50 AS(K,J)=A(K1,J1)
60 CONTIQUE
C FIND SECOND PART OF NUM CHAR EON

CALL DANSKY(AS,X,Y,Z3,NM1,NMAX)
C SUBSTRACT FIRST PART FROM SECOND PART

DO 100 J=1,NM1
100 Z2(J)-Z2(J)-Z3(J)

RETURN
END

FIGURE 8.-FORTRAN LISTING FOR SUBROUTINE BOLLIN
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DAVISO

Davison

PURPOSE: Transform system to make output a state variable

USAGE: CALL DAVISO (A,B,C,N,NMAX,MC)

Where A - input system matrix whiih upon return is
transformed system TAT

B - input system vector which upon return is
transformed input vector TB

C - system output vector

N - order of A

NMAX - dimension of A in calling program > N

MC - position of maximum element in C vector

DOUBLE DIMENSION: A must be double dimensioned
(NMAX, NMAX) in calling program

PROGRAM OUTPUT: If all N elements of C are zero
the message "All elements of C
are zero" is output and the pro-
gram is put in PAUSE

FIGURE 9.-DESCRIPTION OF SUBROUTINE DAVISO TRANSFER VARIABLES



-/--

C TRANSFORM X(DOT)=AX+BU,Y=C(TR.N!IrPOSE)X UISINr Z=TX StIJC!

C THAT Y IS A STATE VARIABLE OF Z(DOT)=TAT(INVERSF)+T"
U

SUBROUTINE DAVISO(A,B,C,N,NMAX,'C)
DIM ENSION A(CMAX,1),B(1),C(1)
DOUBLE PPREISION SUM

C FIND MAX EI.E FINT IN r AS C(tC)
CM0.
MC=0
DO 5 J=1,N
IF(ABS(C(J)).LT.CM) rO TO 5
CM=ARS(r(J))
MC=J

5 CONTI NUE
IF(MC.GT.O) GO TO 10
WRITE(6,7)

7 FORMAT(1X,26HALL ELEMENTS OF C ARE ZERO)
PAUSE

C PREMULT A BY T CHANrES MTC ROll ONLY
10 DO .17 K=1,N

SUM=O0.
DO 15 J=1,N

15 SUM=SIM+D IE(C(J)*A(J,K))
17 A(MC, K)=SU.
C POST MULT A BY T INVERSE
C FOR d NOT = VC: A(K,J)=A(K,J)-A(K,tC)*C(J)/C(MC)

PIVOT=1./C(MC)
DO 30 J=1,N
IF(J.EQ.MC) GO TO 30
DO 25 K=1,N

25 A(K,J)=A(K,J)-A(K,HMC)*C(J)*PIVOT
30 CONTINUE
C FOR J=MC: A(K, fC)=A(K,MC)/C(MC)

DO 35 K=1,N
35 A(K,MC)uA(K,MC)*PIYOT
C PRE MULT B BY T CHANnES B(MC) ONLY

SUM=O.
DO 37 J=1,N

37 SUM=SUM+DBLE(C(J)*B(J))
B(MC)-SUM
RETURN
END

FIGURE 10.-FORTRAN LISTING FOR SUBROUTINE DAVISO
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FRPOLY

Frequency Response of Polynomials

PURPOSE: To evaluate system transfer function polynomials
to obtain system frequency response

USAGE: CALL FRPOLY (Zj,Z2,HZ,G,AMP,PHA,N)

Where Zl - denominator polynomial, vector order N

Z2 T numer4tor polynomial, vector order N

HZ - frequency in hertz

G - system transfer function Z2(jHZ)/Zl(jHZ)
evaluated at radian frequency HZ*2w

AMP - transfer function amplitude, IGI

PHA - transfer function phase, LG degrees

N - order of Z1

COMPLEX: G must be declared complex in the
calling program

DOUBLE PRECISION: Z1 and Z2 must be declared
double precision in the
calling program

NOTES: the Z1 and Z2 must be in the form:

Z1 = An + 21 Xndl + ...
1 n

Z2 = Z2n- + .. +Z2
1 n

FIGURE ll.-BRSCRTPTION OF SUBROUTINE FRPOLY TRANSFER VARIABLES



C EV/A[UATEi TRANSFER FIINMTON Z2(S)/Zl(S) FOlP rS=6.2P*1IZ*,J

SHBRMITINE FfPOLY(Z1,Z2,HiZ,rO,AMP,PHA,I)

rOfIPIFX r,,SUM1l,SUM2
Nfil =N-i
SUMlR-Zl(N)
SiltIl I=0.
SUM2R-Z2(N)
SIJM2 I-f.
rT=l.
V)JmHZ*6 .2831853

1 KK-2
IF(Ntl1.EQ.fl) GO TO 40
DO 35 K1l,N1l
N MK=N- K
GTuO-T*t-J
ZZluZ1(NMK)*GT
ZZ2-*Z2(NMK)*GT
GO TO (5,10,3,B),KK

3 ZZl=-ZZl
ZZ2--ZZ2

5 SUfllRuSUJMlR+ZZl
.SUM2R-SIJP'2R+ZZ2
GO TO 30

8 ZZI.-ZZl
ZZ2w-ZZ2

10 SUMI.SU1I+ZZ1
SUM I =Sllfl2 I .ZZ2

30 KK-KK+1
IF(KK.nT.4) KK-1

35 CONTINUE
C ADD ON S**N TO OEM SIMl
40 SUMl-CMPLX(SNnL(SUM1R),SNGL(SUMII))4GT*IWJ*VtiPLX(0.,l.))**(KK-1)

SUM2.CMPLX(S nGL(SUM2R),SNGL(SUi2 I)).
GuSUS11JM1
AMP-CABS(G)
PMA-ATAN2(AIMAG(G),REAL(G) )*57.29578
RETURN
END

FIGURE 12.-FORTRAN LISTING FOR SUBROUTINE FRPOLY;



20

SYSTEM STATE VARIABLE EQUATIONS

x = Ax + Bu, y = Ctx

A,BC A

ABC three

DAVISO BOLLIN DANSKY

A ,B times DANSKY

transfer POLMPY
function characteristic

equation

FRPOLY

RHWTZ

frequency
response

stability

FIGURE 13.-FLOW CHART FOR FOiKRAN SUBROUTINES



C SANIPLE PROBLEIM MAIN PROGRAM
DIMENSION A(3, 3),AS(3, 3),B(3), C(3),Z1(3),Z2(3),Z3(3), X(3),Y(3)
DOUBLE PRECISION AS,Z1,Z2,Z3,X,Y
COMPLEX G
DATA A/0.,0.,-36.,1.,0.,-21.,0.,1.,-7./
DATA B/0.,0., 1./,C/6.,1., O./,HZ,N, ltA X/1.,3,3/
URITE(6,1) ((A(I,J),J=1,N), I=1,N)

1 FORtIAT(' A=',/,1P3E12.3,/, 1P3E12.3,/,1P3E12.3)
WRITE(6,2) (B(J),J=1,N)

2 FORMAT(' B VECTOR=',1P3E12.3)
,RITE(6,3) (C(J),J=1,N)

3 FORMAT(' C VECTOR= ,1P3E12.3)
CALL BOLL IN(A,AS, B,C,X, Y, Z1, Z2, Z3, N,N.:AX)
WRITE(6,10) (Zl(J),J=1,N)

10 FORMAT(' DENOMINATOR-',1P3E12.3)
WRITE(6,20) (Z2(J),J=1,N)

20 FORAT (' NUMERATOR=',1P3E12.3)
CALL FRPOLY(Z1,Z2,HZ,G,AMP,PHA,N)
.RITE(6,30) IZ,G,AMP, PHA

30 FORMAT(' AT',F4.1,' HERTZ THE TRANSFER FUICTION =',-
1 1P2E12.3,/,' APLITUDE=',1PE12.3,' PHASE=',1PE12.3)

CALL RHWTZ(Z1,N,N1)
WRITE(6,40) M

40 FORMAT(' NUMBER OF UNSTABLE ROOTS-',15)
STOP
END

FIGURE 14.- FORTRAN listing for sample problem main program

A=
0.000 1.000E 00 0.000
0.000 0.000 1.000E 00

-3.600E 01 -2.100E 01 -7.000E 00
B VECTOR- 0.000 0.000 1.000E 00
C VECTOR- 6.000E 00 1.000E 00 0.000
DENOMINATOR= 7.000E 00 2.100E 01 3.600E 01
NUMERATOR- -2.220E-16 1.000E 00 6.000E 00
AT 1.0 HERTZ THE TRANSFER FUNCTION = -3.048E-02 -1.142E-02
AMPLITUDE- 3.255E-02 PHASE= -1.595E 02
NUMBER OF UNSTABLE ROOTS= 0

FIGURE 15.-SAMPLE PROBLEM PROGRAM OUTPUT


